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Coxeter group, Coxeter system, Coxeter matrix

Definition
• M = (mij)1≤i,j≤n: a symmetric matrix: Coxeter matrix.
• mij ∈ N ∪ {∞} where mii = 1 and mij > 1 for i 6= j.
• S = {s1, . . . , sn}: a generating set.
• R = {(sisj)mij = 1}: relations.
• W(M) = 〈S|R〉: Coxeter group of type M.
• (W,S): a pair, called the Coxeter system of type M.
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The Coxeter-Dynkin diagrams

Definition
The Coxeter-Dynkin diagram of Coxeter matrix M:
• A labeled graph.
• Nodes: [n] = {1, 2, . . . ,n}.
• Edges: node i joined node j by an edge labeled mij if

mij ≥ 3. We often omit the label 3.
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An example

Example

• M =

(
1 3
3 1

)
, S = {a, b},

• W(M) =
{

a, b| a2 = b2 = 1, (ab)3 = 1
}
= Dih6 = S3.

• The Coxeter-Dynkin diagram of M is: 3 .
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Reflection representation

Definition
• (W,S): a Coxeter system of type M = (mij)i,j∈[n]. |S| = n.
• V: a vector space of dimension n, with basis e1, . . . , en.
• B(□,□): a bilinear form on V: B(ei, ej) = −2 cos π

mij
.

B(ei, ej) = −2 if mij = ∞.
• Q(v) = 1

2B(v, v): a quadratic form.
• ρi(v) = v − B(v, ei)ei: a linear transformation.
• ρ : W → GL(V); r1r2 · · · rq 7→ ρ1ρ2 · · · ρq where ri ∈ S.
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Properties

Theorem
• ρi is a reflection.
• ρi preserves B: B(ρix, ρiy) = B(x, y).
• the order of ρiρj is mij.
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Finite reflection groups

Definition
A finite reflection group is a finite linear group generated by
reflections.
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The reflection representation is one-to-one

Consider the reflection representation ρ : W → GL(V).
• it is surjective.
• it is injective.

Points:
▶ prefundamental domain. (Definition 8, Theorem 9)
▶ contragredient representation ρ∗ : W → GL(V∗).

(Definition 10)
▶ (Lemma 11, Theorem 12)
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Finite Coxeter group is a finite reflection group
Consider the map between two “bigger” “categories”
{ all finite Coxeter groups } → { all finite reflection groups }.
• it is indeed a map.
• it is injective.
• it is surjective.

Points:
▶ irreducible representation and absolutely irreducible

representation. (Definition 13, Theorem 14)
▶ root system. (Definition 18)
▶ positive definte symmetric bilinear form. (Lemma 20,

Theorem 21)
▶ then we have a Coxeter system for any finite reflection

group. (Theorem 21)
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The main theorem
Theorem
An irreducible Coxeter group is finite if and only if its
Coxeter-Dynkin diagrams occurs in

An,n ≥ 1, 4 Bn = Cn,n ≥ 3,

Dn,n ≥ 4, E6,

E7, E8,
4 F4,

6 G2,
5 H3,

5 H4,
m Im

2 ,m ≥ 3
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How to prove?

• STEP 1. “ ⇐= ”: B is positive definite.
• STEP 2. connected diagrams.
• STEP 3. no circuit. use Q(v) > 0 for v 6= 0.
• STEP 4. exclude some infinite groups.
• STEP 5. use Q to determinate that 4 >

∑
k̸=i B(ei, ek)

2.
• STEP 6. most 3 edges from one node.
• STEP 7. if one node with 3 edges, these 3 edges are

labeled 3.
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How to prove?

• STEP 8. if one edge labeled 6, most 2 nodes.
• STEP 9. if one node with 3 edges, all labeled 3.
• STEP 10. if one edge labeled 5, the two points of this

edge either has no more edge, or has an edge labeled 3.
• STEP 11. most one node with 3 edges.
• STEP 12. exclude some subdiagrams.
• STEP 13. check all posible diagrams.
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Many thanks to Prof. XXX.
Thank you for listening!
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