The Classification of Finite Coxeter Groups

Zero

指导老师: XXX

2020.05.25

Outline

- 1. Coxeter Groups
- 2. Reflection Representation
- 3. Relations
- 4. The Classification of Finite Coxeter Groups
- 5. The End

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

Coxeter group, Coxeter system, Coxeter matrix

Definition

- $M = (m_{ij})_{1 \le i,j \le n}$: a symmetric matrix: Coxeter matrix.
- $m_{ij} \in \mathbb{N} \cup \{\infty\}$ where $m_{ii} = 1$ and $m_{ij} > 1$ for $i \neq j$.
- $S = \{s_1, \ldots, s_n\}$: a generating set.
- $R = \{(s_i s_j)^{m_{ij}} = 1\}$: relations.
- $W(M) = \langle S | R \rangle$: Coxeter group of type M.
- (W, S): a pair, called the Coxeter system of type M.

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

The Coxeter-Dynkin diagrams

Definition

The Coxeter-Dynkin diagram of Coxeter matrix M:

- A labeled graph.
- Nodes: $[n] = \{1, 2, \dots, n\}.$
- Edges: node *i* joined node *j* by an edge labeled m_{ij} if $m_{ij} \ge 3$. We often omit the label 3.

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

An example

Example

•
$$M = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$
, $S = \{a, b\}$,

•
$$W(M) = \{ a, b | a^2 = b^2 = 1, (ab)^3 = 1 \} = \text{Dih}_6 = S_3.$$

• The Coxeter-Dynkin diagram of M is: $\bullet^3 \bullet$.

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

Reflection representation

Definition

- (W, S): a Coxeter system of type $M = (m_{ij})_{i,j \in [n]}$. |S| = n.
- V: a vector space of dimension n, with basis e_1, \ldots, e_n .
- $B(\Box, \Box)$: a bilinear form on V: $B(e_i, e_j) = -2 \cos \frac{\pi}{m_{ij}}$. $B(e_i, e_j) = -2$ if $m_{ij} = \infty$.
- $Q(v) = \frac{1}{2}B(v, v)$: a quadratic form.
- $\rho_i(v) = v B(v, e_i)e_i$: a linear transformation.
- $\rho: W \to \operatorname{GL}(V); r_1 r_2 \cdots r_q \mapsto \rho_1 \rho_2 \cdots \rho_q$ where $r_i \in S$.

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

Properties

Theorem

- ρ_i is a reflection.
- ρ_i preserves B: $B(\rho_i x, \rho_i y) = B(x, y)$.
- the order of $\rho_i \rho_j$ is m_{ij} .

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

Finite reflection groups

Classification of Finite Coxeter Groups Definition A finite reflection group is a finite linear group generated by Reflection reflections. Representation

The

The reflection representation is one-to-one

Consider the reflection representation $\rho: W \to GL(V)$.

- it is surjective.
- it is injective.

Points:

- prefundamental domain. (Definition 8, Theorem 9)
- contragredient representation ρ*: W→ GL(V*). (Definition 10)
- ► (Lemma 11, Theorem 12)

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

Finite Coxeter group is a finite reflection group

Consider the map between two "bigger" "categories" { all finite Coxeter groups } \rightarrow { all finite reflection groups }.

- it is indeed a map.
- it is injective.
- it is surjective.

Points:

- irreducible representation and absolutely irreducible representation. (Definition 13, Theorem 14)
- root system. (Definition 18)
- positive definite symmetric bilinear form. (Lemma 20, Theorem 21)
- then we have a Coxeter system for any finite reflection group. (Theorem 21)

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

The main theorem

Theorem

An irreducible Coxeter group is finite if and only if its Coxeter-Dynkin diagrams occurs in

The Classification

of Finite

Coxeter Groups

The Classification of Finite Coxeter Groups

How to prove?

- **STEP 1.** " \Leftarrow ": *B* is positive definite.
- STEP 2. connected diagrams.
- STEP 3. no circuit. use Q(v) > 0 for $v \neq 0$.
- **STEP 4.** exclude some infinite groups.
- STEP 5. use Q to determinate that $4 > \sum_{k \neq i} B(e_i, e_k)^2$.
- **STEP 6.** most 3 edges from one node.
- **STEP 7.** if one node with 3 edges, these 3 edges are labeled 3.

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

How to prove?

- STEP 8. if one edge labeled 6, most 2 nodes.
- **STEP 9.** if one node with 3 edges, all labeled 3.
- **STEP 10.** if one edge labeled 5, the two points of this edge either has no more edge, or has an edge labeled 3.
- **STEP 11.** most one node with 3 edges.
- STEP 12. exclude some subdiagrams.
- STEP 13. check all posible diagrams.

The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups

The End

Many thanks to Prof. XXX. Thank you for listening! The Classification of Finite Coxeter Groups

Coxeter Groups

Reflection Representation

Relations

The Classification of Finite Coxeter Groups